Is it time for us to go to fully integrated models for stream-aquifer management?

Tissa H. Illangasekare, PhD, PE, P.Hyd, BCEE, DWRE

AMAX Distinguished Chair and Professor of Civil and Environmental Engineering and
Director, Center for Experimental Study of Subsurface Environmental Processes (CESEP)
Colorado School of Mines

Robert Prucha, PhD, PE
Integrated Hydro Systems
Golden, Colorado

Colorado Aquifer Management: Groundwater and river flow connection
Denver, Colorado
November 28, 2012
Streamflow Depletion by Wells—Understanding and Managing the Effects of Groundwater Pumping on Streamflow
By Paul M. Barlow and Stanley A. Leake (USGS Circular 1376)

Question:

Are the current modeling methods truly capture all aspects of groundwater and river connections to accretion and depletion?
Challenges in Hydrology: Processes across Interfaces at multiple scales...

Subsurface processes occur at pore scale and questions are asked at larger scales.

Darcy Medal Lecture, European Geological Union, 2012, Vienna, Austria
Energy and Mass Transfer Processes in Hydrologic Systems

Subsurface

Atmospheric Boundary Layer

Surface

Evaporation

Accretion and depletion
OUTLINE

- Background and history
- Modeling methods
- What are integrated models?
- Predicting extreme events
- Unsaturated zone effects
- Feed back effects and de-coupling
- Calibration and effective parameters
- Example- Integrated Model
BACKGROUND

✧ My own work in early 1974-1978 as a PhD student at CSU

Coupled model to simulate dynamics of stream-aquifer interactions

✦ Based on linear systems (response functions).

✦ Linearized 2-d groundwater flow equation.

✦ Linear system of river reaches (Muskingum routing)

✦ Early use of finite elements method.
South Platte River-Aquifer Simulator

Compared four drought mitigation strategies:

1) Pump to capacity
2) Line canals
3) Increase irrigation efficiency
4) Combination
Analytical solutions for simplified systems

Glover analytical solution

\[Q_s = Q_\text{w} \text{erfc} \left(\sqrt{\frac{d^2 S}{4T}} \right) \]

Systems parameters

\[\frac{d^2 S}{T} \]

Jenkin’s Stream depletion factor (SDF)

Streamflow-depletion Response-time factor (units of time)

Constant pumping \(Q_\text{w} \)

Infinity

Fully penetrating river with full connection

Fully penetrating well

Homogeneous & isotropic

Confined

Constant Transmissivity (T=K_b) both time and space
Numerical Models

- Irregular geometry of lateral and vertical boundaries
- Irregular geometry of streams, rivers, and other surface-water features.
- Non-uniform (heterogeneous) aquifer properties.
- Complex, time-varying pumping schedules at multiple wells or well fields pumping within a basin.
- Nonlinearities, such as boundary conditions and aquifer properties that change with changes in groundwater levels.
Superposition Methods

Simple Analytical solutions → Linear superposition/response function → Complex numerical models

\[\frac{\partial}{\partial x} \left(T(x,y) \frac{\partial s}{\partial x} \right) + \frac{\partial}{\partial y} \left(T(x,y) \frac{\partial s}{\partial y} \right) = S \frac{\partial s}{\partial t} + Q_s \]

1. Substantial changes in drawdown corresponding changes in transmissivity,
2. Aquifer getting hydraulically disconnected with river.
3. Water levels below the evapotranspiration extinction depth so that ET ceases,
4. Drying up a reach of a stream
What are integrated models?

Traditional Groundwater Model
- Recharge
- Discharge
 - Saturated Zone

Integrated Model
- Precipitation
 - Temperature
- ET
 - Unsaturated Zone
 - Saturated Zone
 - Overland Flow

Flow Processes:
- Evapotranspiration
- Precipitation
- Irrigation recharge
- Unsaturated zone flow
- Overland flow
- Channel flow
- Return flow

Bedrock
What are the prediction errors when the model is used outside the range of calibration?

Gaining river (accretion)

\[Q_r = \Gamma(K_{eff}, W_p) \frac{dh}{dl} \]

Loosing river (depletion)

\[Q_r = \text{Slope} = \frac{dh}{dl} < 0 \]
Parameter Sensitivity

\[Q_r = \Gamma(K_{\text{eff}}, W_p) \frac{dh}{dl} \]

Determined during calibration

High Flow

Low Flow
Role of Unsaturated Zone in Stream Depletion

Case 1
- Dry Bed
- Water Content (θ)
- Redistribution of a Saturated Profile
- Water Table
- Dry Bed Situation

Case 2
- Dry Bed
- Ground Water Mound

Case 3
- Ponded Bed
- Saturated Front
- Water Table
- Wet Bed Situation

Case 4
- Ponded Bed
- Water Table
Unsaturated zone processes are important in arid and semi-arid settings (low flow and high flow).

Infiltration from irrigation, canal seepage and stream losses are controlled by unsaturated zone processes.

Unsaturated processes zone parameters are not included and calibrated in currently used modeling tools.
Pumping at the well located 300 feet from the stream at a rate of 1.0 million gallons per day causes induced infiltration of streamflow. More than 80 percent of the induced streamflow in captured by the well, but some of the induced streamflow returns to the stream through a zone of “induced throughflow” (Newsom and Wilson, 1988; model results from Barlow, 1997).
Well pumping – distributed stream response

\(Q_r/Q_p \)

Reach 1

Reach 2

Reach 3

AQUIFER BOUNDARY

REACH 1

REACH 2

REACH 3

RIVER

DOWNSTREAM

Time
Feed back to the river

Reach 1

Reach 2

Reach 3
The stream stage and the water table drawdown are solved separately.

Feedback processes are modeled iteratively.

Parameter for coupling calibrated (e.g. conductance or stream transmissivity).

Calibrated parameter does not capture extreme events (e.g., low or high flow).
Effects of local hydrogeology

\[Q_r = \Gamma(K_{eff}, W_p) \frac{dh}{dl} \]

When \(K_1 \gg K_2 \)

\[K_{eff} = \frac{K_1 + K_2}{K_1 K_2} \]

\[K_{eff} \rightarrow K_2 \]
Stream flow is controlled by many combination of factors (natural flow, diversions, ….)

The calibrated parameters depends on the period chosen and the flow conditions –extreme events, low flow, climate change).
Capturing spatial variability through effective parameters

- Size of the grid determines how the processes are captured
- Effective parameters depend on the grid size
- Results of the local-scale simulations show an increase in discharge of 10 to 103% compared to the regional-scale simulations.

Regional model grid = 500 m
Local-scale model grid = 100 m (points)
A case for integrated models

- Limitations of decoupling
- Role of unsaturated zone
- Local hydrogeology in the river
- Calibration limitations- temporal variability – extreme events- climate change
- Scale- capturing spatial variability through effective parameters
Example

Site Wide Water Balance Study at Rocky Flats

Water Balance Model Boundary - IA

A-B Pond Model Boundary

SWWB Model Boundary
Example

A fully integrated, hydrologic, groundwater-surface water flow model of the Mokolo River catchment in South Africa.

- The modeling tool chosen for this study was the MIKE SHE/Mike11 framework developed by Danish Hydraulic Institute (DHI).

- The model will be used to provide critical inputs to a research project related to determining sustainable environmental flows in South African non-perennial rivers.

Mokolo River catchment (red) is part of the Limpopo River basin (blue). The Limpopo River drains to the Indian Ocean to the east of the Mokolo River. The Mokolo River catchment is about 8437 km².
Integrated Model Date Needs

Flow Model

- External Stresses
- Flow System (Structure)
- System Response

Flow Model

- **Climate Data:**
 - Rainfall
 - Reference ET
 - Wind
 - Air Temperature
 - Humidity
 - Solar Radiation
- Groundwater Pumping
 - Irrigation
 - Dewatering
- Artificial Recharge
- River Operations

Subsurface Flow System

- Geology
- Stratigraphy
- Surface Soils
- Topography
- Hydraulic Properties
- Subsurface Utilities

Surface Water Flow System

- Natural Drainage Profiles and Sections
- Drainage Diversions/Berms
- Hydraulic Structures - Dams, Weirs, Gates, others
- Vegetation
- Land Use (Pavement, bldgs)

Subsurface

- Groundwater Heads/Gradients
- Groundwater Flows
- Infiltration/Recharge
- Groundwater Discharge to Surface Water - Seepage
- Soil Moisture w/depth & time

Surface Water

- Overland Flow/Stage
- Surface Flow/Stage
 - Drainages
 - Structures
- Baseflows (Gaining/Losing)
- Pond/Reservoir levels
- Infiltration Rates
- Evapotranspiration
Example Code: MIKE SHE

A physically-based, spatially-distributed, finite difference, hydrologic code that simulates fully coupled flows including surface flows (over-land flow, channelized flow) and subsurface flows (saturated and unsaturated zone)

- Climate
- River flow hydraulics
- Overland Flow
- Subsurface Unsaturated Zone Flow
- Subsurface Saturated Zone Flow
- Irrigation
Attempted to reproduce a range of system responses, including:

- timing/duration of no-flow along gauged streams (dry periods),
- duration and magnitude of stream flows (low and high flow periods),
- flow duration,
- groundwater baseflow (end of non-rainy season),
- average and transient groundwater levels (wet/dry season,
- areas/rates of spring discharge, and
- gaining/losing reaches along the Mokolo and tributaries.
Observations and Conclusions

✧ Currently used models and methods have limitations with respect to handle complex dynamic interactions and feed back.

✧ Critical unsaturated zone processes are not fully accounted for.

✧ Calibration limitations and inability to predict extreme events.

✧ Vegetation dynamics are not captured well.

✧ The calibration does not capture the interactive processes.

✧ Critical when water quality has to be incorporated

✧ New technologies for data acquisition methods available for real-time simulations using integrated models.